热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

双臂|夹角_程序员买啥游戏机,自己动手做一个体感小游戏

篇首语:本文由编程笔记#小编为大家整理,主要介绍了程序员买啥游戏机,自己动手做一个体感小游戏相关的知识,希望对你有一定的参考价值。摘要

篇首语:本文由编程笔记#小编为大家整理,主要介绍了程序员买啥游戏机,自己动手做一个体感小游戏相关的知识,希望对你有一定的参考价值。




摘要:结合一个仿制的简易Flappy Bird游戏,ModelBox体感小游戏就这样诞生了。

本文分享自华为云社区《ModelBox开发案例 - 体感小游戏》,作者:菊厂飞戈。

前段时间,小鱼老师在AI说发布了文章 ModelBox推理真的高效吗,里面介绍了双阶段单人人体关键点检测案例,运行速度超快:使用原生的ONNXRuntime API做开发,可以达到36fps;而ModelBox版本(推理框架同样是ONNXRuntime),更是达到了接近80fps!

于是乎,笔者产生了一个大胆的想法:这么快的人体关键点检测应用,不用来跑游戏可惜了呀!经过一段时间的开发调试,结合一个仿制的简易Flappy Bird游戏,ModelBox体感小游戏诞生了:

玩家通过上下摆动双臂做出“扇动翅膀”的动作,阻止小鸟下落,躲避画面中的“狼柱”;如果小鸟不小心碰到了“狼”或者触碰到画面边缘,游戏停止,然后会重新开始。画面左上方显示的是玩家存活的时长。

本案例使用的是Windows版本的 ModelBox SDK,如果对此还不熟悉,请先阅读 ModelBox端云协同AI开发套件(Windows)开发环境篇,如果对 ModelBox AI应用开发感兴趣,欢迎参加我们的 ModelBox实战营。


工程结构

本案例是在小鱼老师的 single_human_pose 应用基础上修改而来,案例所需资源(代码、模型、测试数据等)均可从obs桶下载。工程目录与原始版本基本一致,下面列出其中不一样的地方:

single_human_pose
├─data
│ ├─game // 体感游戏资源目录
│ ├─icon // 体感游戏所需的图标资源
│ ├─src // 体感游戏源代码,可独立运行
│ └─dance_120fps.mp4 // 测试视频
├─etc
│ └─flowunit // 功能单元目录
│ ├─draw_pose // 关键点绘制功能单元
│ ├─draw_pose.py // 关键点绘制功能单元入口文件
│ ├─draw_pose.toml // 关键点绘制功能单元配置文件
│ ├─draw_utils.py // 其他功能函数存放文件
│ ├─flappy.py // Flappy Bird核心逻辑
│ ├─smooth.py // 平滑算法,使关键点更稳定
│ └─vector.py // 平面坐标系中点的运算
│ ├─... // 其他功能单元
├─graph
│ ├─single_human_pose.toml // 默认的技能流程图
│ └─single_human_pose_camera.toml // 使用摄像头运行的技能流程图
├─...
└─build_project.sh

Flappy Bird

本案例中游戏相关的资源和代码在 data/game 目录下,我们可以直接执行其中 src 下的 main.py 文件,得到一个使用键盘控制的 Flappy Bird 游戏。main.py 文件中的核心函数内容如下:

def run():
# 初始化游戏
snake = Snake() # 贪吃蛇
flappy = Flappy() # Flappy Bird
pacman = Pacman() # 吃豆人
# 初始化摄像头,参数0表示设备的第一个摄像头
cap = cv2.VideoCapture(0)
# 判断摄像头初始化是否成功
if not cap.isOpened():
print('failed to open camera 0')
exit()
# 设置分辨率为 960 x 540
cap.set(3, 960)
cap.set(4, 540)
while True:
# 读取一帧视频图像,ret表示读取是否成功
ret, frame = cap.read()
# 对原始图像做高斯模糊,避免干扰到游戏画面
frame = cv2.GaussianBlur(frame, (0, 0), 5)
# 阻塞等待键盘响应1ms,获取按下的按键值
pressed_key = cv2.waitKey(1) & 0xFF
if pressed_key == ord('q'): # 如果按下q键则退出游戏
break
else: # 根据按键类型更新游戏画面
# frame = snake.update_snake_keyboard(frame, pressed_key)
frame = flappy.update_flappy_keyboard(frame, pressed_key)
# frame = pacman.update_pacman_keyboard(frame, pressed_key)
# 打开一个名为game的窗口,显示图像
cv2.imshow('game', frame)
# 释放摄像头资源
cap.release()
# 关闭所有窗口
cv2.destroyAllWindows()

可以看到,其中包含了3个小游戏:贪吃蛇、吃豆人和Flappy Bird。游戏界面使用OpenCV绘制,程序将打开0号摄像头,将游戏画面叠加在摄像头画面上;在每帧的绘制中,程序阻塞1ms等待键盘响应,根据按键不同控制游戏的运行:按下空格键将控制小鸟往上飞行一段距离(具体内容查看 src/flappy.py )。开发者可以解开另外两个游戏的注释代码,试试它们的游戏效果。


关键点绘制功能单元

Flappy Bird游戏与人体关键点检测应用的结合,完全容纳在 draw_pose 功能单元中。在原始的 single_human_pose 应用里,这个功能单元只是将检测到的关键点数据绘制到画面中;本应用中,在得到人体关键点数据后,又计算了双臂与身体的夹角,如果检测到“扇动翅膀”的动作,则控制小鸟往上飞行一段距离。游戏画面与高斯模糊后的人体关键点画面叠加在一起显示,既能看到AI应用的效果,也不至于干扰到游戏画面的显示。

def open(self, config):
...
# 使用图标资源初始化Flappy Bird游戏控制示例
icon_path = config.get_string("icon_path", ".")
self.flappy = Flappy(icon_path)
return modelbox.Status.StatusCode.STATUS_SUCCESS
def process(self, data_context):
...
for image, hand_pose in zip(in_image, in_feat):
...
# 获取上一功能单元输出的人体关键点数据
pose_data = np.array(hand_pose.as_object(), copy=False)
pose_data = pose_data.reshape((self.kps, 3))
# 计算双臂与身体的夹角
arm_angles = get_arm_angles(bbox, pose_data, self.keypoints_smooth)
...
# 在摄像头画面中画出主要的人体关节,并作高斯模糊
draw_pose(out_img, bbox, pose_data, self.score_thre)
out_img = cv2.GaussianBlur(out_img, (0, 0), 5)
# 根据双臂动作控制游戏画面更新,叠加到摄像头画面中做展示
out_img, alive = self.flappy.update_flappy_pose(out_img, arm_angles, fps)
...
return modelbox.Status.StatusCode.STATUS_SUCCESS

camera流程图

游戏的运行需要实时的摄像头画面,因此本案例增加了使用PC自带或者外接的USB摄像头作为输入源的流程图,对应文件为 single_human_pose_camera.toml,其中的流程图描述 graphconf 内容如下:

graphconf = """digraph single_human_pose
node [shape=Mrecord]
queue_size = 1
batch_size = 1
input1[type=input,flowunit=input,device=cpu,deviceid=0]
data_source_parser[type=flowunit, flowunit=data_source_parser, device=cpu, deviceid=0]
local_camera[type=flowunit, flowunit=local_camera, device=cpu, deviceid=0, pix_fmt=bgr, cam_width=960, cam_height=540]
det_pre[type=flowunit, flowunit=det_pre, device=cpu, deviceid=0]
color_transpose[type=flowunit flowunit=packed_planar_transpose device=cpu deviceid=0]
normalize[type=flowunit flowunit=normalize device=cpu deviceid=0 standard_deviation_inverse="0.003921568627451, 0.003921568627451, 0.003921568627451"]
det_human[type=flowunit, flowunit=det_human, device=cpu, deviceid=0, batch_size=1]
det_post[type=flowunit, flowunit=det_post, device=cpu, deviceid=0]
object_tracker[type=flowunit, flowunit=object_tracker, device=cpu, deviceid=0]
expand_box[type=flowunit, flowunit=expand_box, device=cpu, deviceid=0]
image_resize[type=flowunit flowunit=resize device=cpu deviceid="0" image_width=192, image_height=256]
color_transpose2[type=flowunit flowunit=packed_planar_transpose device=cpu deviceid=0]
mean[type=flowunit flowunit=mean device=cpu deviceid="0" mean="116.28,103.53,123.68"]
normalize2[type=flowunit flowunit=normalize device=cpu deviceid="0" standard_deviation_inverse="0.0175070,0.01742919,0.01712475"]
det_pose[type=flowunit, flowunit=det_pose, device=cpu, deviceid=0, batch_size=1]
pose_post[type=flowunit, flowunit=pose_post, device=cpu, deviceid=0]
draw_pose[type=flowunit, flowunit=draw_pose, device=cpu, deviceid=0]
video_out[type=flowunit, flowunit=video_out, device=cpu, deviceid=0]
input1 -> data_source_parser:in_data
data_source_parser:out_video_url -> local_camera:in_camera_packet
local_camera:out_camera_frame -> det_pre:in_image
det_pre:resized_image -> color_transpose:in_image
color_transpose:out_image -> normalize:in_data
normalize:out_data -> det_human:input
det_human:output1 -> det_post:in_feat1
det_human:output2 -> det_post:in_feat2
det_human:output3 -> det_post:in_feat3
det_pre:out_image -> det_post:in_image
det_post:has_human -> object_tracker:in_image
object_tracker:out_image -> expand_box:in_image
expand_box:out_image -> image_resize:in_image
image_resize:out_image -> color_transpose2:in_image
color_transpose2:out_image -> mean:in_data
mean:out_data -> normalize2:in_data
normalize2:out_data -> det_pose:image
det_pose:heatmap -> pose_post:in_feat
pose_post:out_data -> draw_pose:in_feat
object_tracker:out_image -> draw_pose:in_image
draw_pose:out_image -> video_out:in_video_frame
det_post:no_human -> video_out:in_video_frame
"""

与 single_human_pose.toml 相比,这个流程图使用 local_camera 替换了 video_demuxer 和 video_decoder 功能单元,其他部分是一致的。

打开工程目录下bin/mock_task.toml文件,修改其中的任务输入和任务输出配置为如下内容:

[input]
type = "url"
url = "0" # 表示0号摄像头,即PC自带摄像头,若PC无摄像头需外接USB摄像头
[output]
type = "local"
url = "0:pose_game" # 表示名为```pose_game```的本地窗口

即使用编号为0的摄像头(默认为PC自带的摄像头),输出画面显示到名为pose_game的本地屏幕窗口中。

执行bin/main.bat camera运行应用,就可以开始游戏了:


点击关注,第一时间了解华为云新鲜技术~


推荐阅读
  • 如何实现JDK版本的切换功能,解决开发环境冲突问题
    本文介绍了在开发过程中遇到JDK版本冲突的情况,以及如何通过修改环境变量实现JDK版本的切换功能,解决开发环境冲突的问题。通过合理的切换环境,可以更好地进行项目开发。同时,提醒读者注意不仅限于1.7和1.8版本的转换,还要适应不同项目和个人开发习惯的需求。 ... [详细]
  • 本文比较了eBPF和WebAssembly作为云原生VM的特点和应用领域。eBPF作为运行在Linux内核中的轻量级代码执行沙箱,适用于网络或安全相关的任务;而WebAssembly作为图灵完备的语言,在商业应用中具有优势。同时,介绍了WebAssembly在Linux内核中运行的尝试以及基于LLVM的云原生WebAssembly编译器WasmEdge Runtime的案例,展示了WebAssembly作为原生应用程序的潜力。 ... [详细]
  • Linux服务器密码过期策略、登录次数限制、私钥登录等配置方法
    本文介绍了在Linux服务器上进行密码过期策略、登录次数限制、私钥登录等配置的方法。通过修改配置文件中的参数,可以设置密码的有效期、最小间隔时间、最小长度,并在密码过期前进行提示。同时还介绍了如何进行公钥登录和修改默认账户用户名的操作。详细步骤和注意事项可参考本文内容。 ... [详细]
  • IhaveconfiguredanactionforaremotenotificationwhenitarrivestomyiOsapp.Iwanttwodiff ... [详细]
  • XML介绍与使用的概述及标签规则
    本文介绍了XML的基本概念和用途,包括XML的可扩展性和标签的自定义特性。同时还详细解释了XML标签的规则,包括标签的尖括号和合法标识符的组成,标签必须成对出现的原则以及特殊标签的使用方法。通过本文的阅读,读者可以对XML的基本知识有一个全面的了解。 ... [详细]
  • 本文介绍了Web学习历程记录中关于Tomcat的基本概念和配置。首先解释了Web静态Web资源和动态Web资源的概念,以及C/S架构和B/S架构的区别。然后介绍了常见的Web服务器,包括Weblogic、WebSphere和Tomcat。接着详细讲解了Tomcat的虚拟主机、web应用和虚拟路径映射的概念和配置过程。最后简要介绍了http协议的作用。本文内容详实,适合初学者了解Tomcat的基础知识。 ... [详细]
  • 本文介绍了如何使用C#制作Java+Mysql+Tomcat环境安装程序,实现一键式安装。通过将JDK、Mysql、Tomcat三者制作成一个安装包,解决了客户在安装软件时的复杂配置和繁琐问题,便于管理软件版本和系统集成。具体步骤包括配置JDK环境变量和安装Mysql服务,其中使用了MySQL Server 5.5社区版和my.ini文件。安装方法为通过命令行将目录转到mysql的bin目录下,执行mysqld --install MySQL5命令。 ... [详细]
  • 深入理解Kafka服务端请求队列中请求的处理
    本文深入分析了Kafka服务端请求队列中请求的处理过程,详细介绍了请求的封装和放入请求队列的过程,以及处理请求的线程池的创建和容量设置。通过场景分析、图示说明和源码分析,帮助读者更好地理解Kafka服务端的工作原理。 ... [详细]
  • 本文介绍了如何清除Eclipse中SVN用户的设置。首先需要查看使用的SVN接口,然后根据接口类型找到相应的目录并删除相关文件。最后使用SVN更新或提交来应用更改。 ... [详细]
  • php缓存ri,浅析ThinkPHP缓存之快速缓存(F方法)和动态缓存(S方法)(日常整理)
    thinkPHP的F方法只能用于缓存简单数据类型,不支持有效期和缓存对象。S()缓存方法支持有效期,又称动态缓存方法。本文是小编日常整理有关thinkp ... [详细]
  • Java编程思想一书中第21章并发中关于线程间协作的一节中有个关于汽车打蜡与抛光的小例子(原书的704页)。这个例子主要展示的是两个线程如何通过wait ... [详细]
  • C# 7.0 新特性:基于Tuple的“多”返回值方法
    本文介绍了C# 7.0中基于Tuple的“多”返回值方法的使用。通过对C# 6.0及更早版本的做法进行回顾,提出了问题:如何使一个方法可返回多个返回值。然后详细介绍了C# 7.0中使用Tuple的写法,并给出了示例代码。最后,总结了该新特性的优点。 ... [详细]
  • CF:3D City Model(小思维)问题解析和代码实现
    本文通过解析CF:3D City Model问题,介绍了问题的背景和要求,并给出了相应的代码实现。该问题涉及到在一个矩形的网格上建造城市的情景,每个网格单元可以作为建筑的基础,建筑由多个立方体叠加而成。文章详细讲解了问题的解决思路,并给出了相应的代码实现供读者参考。 ... [详细]
  • 在开发中,有时候一个业务上要求的原子操作不仅仅包括数据库,还可能涉及外部接口或者消息队列。此时,传统的数据库事务无法满足需求。本文介绍了Java中如何利用java.lang.Runtime.addShutdownHook方法来保证业务线程的完整性。通过添加钩子,在程序退出时触发钩子,可以执行一些操作,如循环检查某个线程的状态,直到业务线程正常退出,再结束钩子程序。例子程序展示了如何利用钩子来保证业务线程的完整性。 ... [详细]
  • Annotation的大材小用
    为什么80%的码农都做不了架构师?最近在开发一些通用的excel数据导入的功能,由于涉及到导入的模块很多,所以开发了一个比较通用的e ... [详细]
author-avatar
哀乐交加6
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有